LeetCode 370 Range Addition
Assume you have an array of length n initialized with all 0's and are given k update operations.
Each operation is represented as a triplet: [startIndex, endIndex, inc]
which increments each element of subarray A[startIndex ... endIndex]
(startIndex and endIndex inclusive) with inc.
Return the modified array after all k operations were executed.
Example:
Given:
length = 5,
updates = [
[1, 3, 2],
[2, 4, 3],
[0, 2, -2]
]
Output:
[-2, 0, 3, 5, 3]
Explanation:
Initial state:
[ 0, 0, 0, 0, 0 ]
After applying operation [1, 3, 2]:
[ 0, 2, 2, 2, 0 ]
After applying operation [2, 4, 3]:
[ 0, 2, 5, 5, 3 ]
After applying operation [0, 2, -2]:
[-2, 0, 3, 5, 3 ]
Hint:
- Thinking of using advanced data structures? You are thinking it too complicated.
- For each update operation, do you really need to update all elements between i and j?
- Update only the first and end element is sufficient.
- The optimal time complexity is
O(k + n)
and usesO(1)
extra space.
- The optimal time complexity is
Diffculty
Medium
Similar Problems
Analysis
这道题的提示说了我们肯定不能把范围内的所有数字都更新,而是只更新开头结尾两个数字就行了, 那么我们的做法就是在开头坐标startIndex位置加上inc,而在结束位置加1的地方加上-inc, 那么根据题目中的例子,我们可以得到一个数组,nums = {-2, 2, 3, 2, -2, -3}, 然后我们发现对其做累加和就是我们要求的结果result = {-2, 0, 3, 5, 3},参见代码如下:
Solutions
解法一:
class Solution {
public:
vector<int> getModifiedArray(int length, vector<vector<int>>& updates) {
vector<int> res, nums(length + 1, 0);
for (int i = 0; i < updates.size(); ++i) {
nums[updates[i][0]] += updates[i][2];
nums[updates[i][1] + 1] -= updates[i][2];
}
int sum = 0;
for (int i = 0; i < length; ++i) {
sum += nums[i];
res.push_back(sum);
}
return res;
}
};
解法二: 我们可以在空间上稍稍优化下上面的代码,用res来代替nums,最后把res中最后一个数字去掉即可
class Solution {
public:
vector<int> getModifiedArray(int length, vector<vector<int>>& updates) {
vector<int> res(length + 1);
for (auto a : updates) {
res[a[0]] += a[2];
res[a[1] + 1] -= a[2];
}
for (int i = 1; i < res.size(); ++i) {
res[i] += res[i - 1];
}
res.pop_back();
return res;
}
}